PYTHON AND PYCHARM

| INTRODUCTION TO PYTHON

Based on previous lecture by F. Galatolo

https://github.com/galatolofederico/python-very-informal-introduction/blob/master/slides.pdf

WHY PYTHON?

Created by Guido van Rossum in the 1980s, to be a general-purpose
language with a simple and readable syntax. Today is more and more required
since it is:

High level

18.00%
Open source

. 16.00% —
Portable: write once run

everywhere
Extendible in C/C++

Easy to learn

14.00% -
12.00%
10.00%

With a mature and supportive B0%e~

community

With hundreds of thousands of
libraries, packages and
frameworks, supported by big
players (Google, Facebook,
Amazon) and non-profit
organizations Year

6.00%

4.00% —

2.00%

% of Stack Overflow questions that month

0.00% —i I I I I I I I I I I 1 I I I
2009 2010 2011 20122013 2014 2015 2016 2017 2018 2019 2020 2021 2022

VIRTUAL ENVIRONMENT

°In each project, a number of Python packages are imported and used. Each of
them may requires a given version of other packages and Python as well.

*A virtual environment is a self-contained directory tree that contains a Python
installation for a particular version of Python, plus a number of additional
packages

°In this way, the project-wide dependencies are stored, easily snapshotted and
retrieved

*Create a Virtual Environment with Python X.Y in folder env

virtualenv --python=pythonX.Y en

* Activate the Virtual Environment
. ./env/bin/activate
*Deactivate the Virtual Environment

deactivate

BASIC PACKAGES MANAGING

*Install package

pip install package

*Uninstall package

pip uninstall package

*Snapshot installed packages in requirements.txt

pip freeze > requirements.txt

*Install all packages snapshotted in requirements.txt

pip install -r requirements.txt

*Now you can import and use this packages in your project

ANACONDA

Anaconda is a distribution of Python that aims to simplify package management
and deployment, suitable for Windows, Linux, and macQOS.

Package versions in Anaconda are managed by conda, an open source, cross-
platform, language-agnostic package manager and environment management

system

Conda analyses the current environment including everything currently installed,
works out how to install /run/update a compatible set of dependencies

I CONDA f] MINI CONDA II"|

= conda ff; A N ACO N DA I
+ python / /

+ base packages / = miniconda /
+ 150 high quality packages/

PYTHON IDE + MINICONDA = PYCHARM

Pycharm offers configurable python interpreter
and virtual environment support.

PyCharm

The Python IDE
for Professional Developers

Based on previous lecture by A. L. Alfeo

https://www.jetbrains.com/help/pycharm/configuring-local-python-interpreters.html
https://www.jetbrains.com/help/pycharm/creating-virtual-environment.html

INSTALLATION 1/2

Install PyCharm using this links:

Linux
Windows
MacOs

B3 PyCharm Setup

Installation Options
ﬁ Configure your PyCharm installation

During PyCharm installation

Create Desktop Shortcut Update PATH variable (restart needed)

enable “open folder as project”

64-bit launcher []Add launchers dir to the PATH

[] Add "Open Folder as Project"

Create Associations

[I.py

https://download.jetbrains.com/python/pycharm-community-anaconda-2020.2.3.tar.gz
https://download.jetbrains.com/python/pycharm-community-anaconda-2020.2.3.exe
https://download.jetbrains.com/python/pycharm-community-anaconda-2020.2.3.dmg

INSTALLATION 2/2

Customize PyCharm

* Accept the JetBrains Privacy Policy

*Choose the Ul theme you prefer

Install Miniconda 3

° Do nOT ins.'.q II a ny feCITU red plug in Installation path for Miniconda 3:

C:\Users\alfeo\miniconda3
*Install Miniconda: includes the [JEREESREEE o bt the Python nterpretr and the packages withinthese anironments
conda environment manager,
Python, the packages they
depend on, and a small number of
other useful packages (e.g. pip).

*Remember, Miniconda can be
installed at any time from
Tools -> Install Miniconda3

° S.‘.q rt USing P)’ChCII’m Miniconda can be installed later via Tools | Install Miniconda 3

Skip Remaining and Set Defaults Back to Featured plugins Start using PyCharm

~—————

https://docs.conda.io/en/latest/miniconda.html
https://en.wikipedia.org/wiki/Python_(programming_language)

NEW PROJECT

Create a new project. Name it “first_project”.

If needed set the conda executable path.

) Events ¥ %X Configure ™ Get Help ¥

nvs\first_project

Create

PC| File Edit View MNavigate Code Refactor Run Tools VCS Window Help

first_project | main.py @ main ¥

Project v S T & — i mainpy

first_project 1
@ main.py
External Libraries

Scratches and Consoles

print_hi(name):

name

miniconda3\e

Process finished with exit code @

¥ 2: Favorites

Q) Event Log

» 4£Run iSTODO @ G Problems B Terminal % Python Console
1:1 CRLF UTF-8 4spaces Python 3.8 (first_project) ‘a

=]

PyCharm 2020.2.5 available // Update... (4 minutes ago)

https://www.jetbrains.com/help/pycharm/guided-tour-around-the-user-interface.html
https://www.jetbrains.com/help/pycharm/using-consoles.html#context

INTERPRETER: DEFAULT CONFIGURATIONS

Is there a red X here?

Luca'miniconda3\envs\first_project

g main

<Na interpreter>

Python Interpreter

Interpreter Settings...

Now you can run it!

PYTHON BASICS

INDENTATION

In python code blocks are not surrounded by curly brackets. Just use
the correct indentation!

for(int i = 0; 1 < n; i++){ for i in range(0, n):
int k=1 % 3 k=1i%3
if(k == 0){ » if k¥ == 0:
. /7 stuff... # stuff. ..

BUILT-IN TYPES

Python is dynamically typed, i.e. types are determined at runtime.

Variables can freely change type during the execution.

In python there are a lot of built-in types, the most notables are:
*Boolean (bool)
*Strings (str)
*Numbers (int, float)
*Sequences (list, tuple)

*Mapping (dict)

VARIABLES

Variables can be assigned to given values...

p|3

..Even multiple variables at once via iterable unpacking. Click for more

on iterable data structures (e.q. lists, tuples...)!

pi, name = 3, “Pippo"

first, second, third = SomeSequence

In Python everything is stored and passed as reference with the only
exception of Numbers.

a=[1,2,3]

b[0] = 5 # now a =[5, 2, 3]

https://docs.python.org/3/tutorial/datastructures.html

CONDITIONAL INSTRUCTION 1/2

Simple conditional instruction with the if keyword.

if someConditions:
someActions ()
some0therActions ()

Python uses and and or as logical operators instead of && and | |

if (C1 and C2) or C3:
someActions ()
someQtherActions ()

Inline conditional instructions can be used as it follows

value if Condition else otherValue

CONDITIONAL INSTRUCTION 2/2

The if-else statement is used as it follows

if Condition:
someActions ()

else:
someOtherActions()

There is no switch case statement in Python. Just use if and elif

if Ci:
A1Q)
elif C2:
A2Q)
elif C3:
A3Q)
else:

AQ

TRY IT YOURSELF!

@ main.py
print_hi(N, name):

nai Py |".I ==

rnal Libraries

main

LOOPS 1/2

There is no do-while loop, just while and for loops

while Conditions: for element in elements:
Stuff () doStuff (element)
otherStuff ()

Tuple unpacking can be used with loops iterations

for x, y in SequenceOfTuples:
doStuff(x, y)

20

LOOPS 2/2

zip() combines one-by-one the elements of two or more iterables

L1 = [1, 2, 3]

L2 = [4, 5, 6]

for x, y in zip(L1l, L2):
print(x, y)

enumerate() returns a list of (index, element) tuples

names = ["Federico", "Mario", "Giovanni"]
for i, name in enumerate(names):
print(i, name)

For efficient loops an iterable object can leverage the itertools packages.

The simplest iterable can be a list created via list comprehension

[someOperation(element) for element in elements]

squares = [i**2 for i in range(0, N)]

2

https://docs.python.org/3/library/itertools.html

FUNCTIONS: DEFINITION

A new function can be defined by using the keyword def

def getCircleArea(r):
return pix*r*x*2

Default argument are indicated with =

def getCircleArea(r, isEngineer=True):

pi = 3 if isEngineer else 3.1415
return pl*r**x2

Inline functions can be created by using the lambda keyword

lambda comma, separated, arguments : expression

For example

norm2D = lambda x, y: math.sqrt(x**2 + y*x2)

72

FUNCTIONS: POSITIONAL ARGUMENTS

A variable number of arguments can be defined via the * symbol

def sum0OfSquares (*args):
squares = [arg**2 for arg in args]
return sum(squares)

result = sumOfSquares(1l, 2, 3)

A sequence can be passed as positional arguments as it follows

def norm2D(x, y):
return math.sqrt(x**2 + y**2)

vec = [2, 3]
norm = norm2D(*vec)

23

FUNCTIONS: KEYWORD ARGUMENTS

A function using keyword arguments needs to have the ** symbol as
last argument.

def greet(language = "en", **kwargs):
if language == "it":
print("Ciao "+kwargs['"name"]+" "+kwargs["surname"])
else:
print("Hello "+kwargs["name"]+" "+kwargs["surname"])

greet("it", surname="Galatolo", name="Federico")
greet (name="Mario", surname="Cimino")

You can also pass a dict of keyword arguments using the symbol **
while calling the method

person = dict(name="Federico", surname="Galatolo")
greet("it", **person)
greet (**person)

24

TRY IT YOURSELF!

Modify the print_hi function to accept a dict as an argument. Print:
* the first number squares, if number is greater than zero

e "Just a zero?!" if number is zero

* «Hi, my name is name», otherwise

print_hi(**kwargs):
kwargs|]>0:
squares = [i** [
elem in squares:
(elem)
kwargs|

(

(+ kwargs|

__name__
argv = (
print_hi(**argv)

CLASSES: METHODS

In python classes are defined with the class keyword. Class methods
are defined with the def keyword. Class method have the first
argument equal to self, in contrast with static method.

class Person: class Person:

def getName(self): greeting = "Hi!"
return "Federico" def getGreeting():
def greet(self): return Person.greeting

return "Hi! I am "+self.getName ()
g = Person.getGreeting()

However, unless you want to use a decorator, Python does not know
about static/non-static methods, it is all about notation!

p = Person()
»p.greet() # ok

Person.greet(p) # still ok

26

https://www.python.org/dev/peps/pep-0318/

CLASSES: ATTRIBUTES

In python you can create, modify and retrieve instance attributes
using the dot (.) selector on the instance reference. You can create and
assign an instance attribute everywhere in a class method.

class Person:
def setName(self, name):
self .name = name
def greet(self):
return "Hi! I am "+self.name

You can create class attributes specifying them after the class
declaration. You can modify and retrieve class attributes using the dot
(.) selector on the class reference
class Person:
greeting = "Hi!"
def setName(self, name):
self .name = name
def greet(self):
return Person.greeting+" I am "+self.name

27

CLASSES: VISIBILITY

In python there is no such thing as a private method or attribute.
Everything is public. The naming convention for “private” methods
and attributes is to precede their name with the _ symbol.

class Person:
def setName(self, name):
self._name = name
def greet(self):

return "Hi! I am "+self._name

28

CLASSES: CONSTRUCTOR

In python the construct function is named _ init_ and it is called at
object instantiation.

You can specify one or more arguments. The first argument is the
object instance reference.

class Person:
def __init__(self, name):
self._name = name
def greet(self):
return "Hi! I am "+self._name
p = Person("Federico")

29

CLASSES: INHERITANCE

You can extend a base class with another specifying the base class
between the parenthesis at class definition. In order to get the base
class reference you need to use the super() function.

class Person:
def __init__(self, name):
self._name = name
def greet(self):
return "Hi! I am "+self._name

class Student(Person):
def greet(self):
return "Leave me alone, I have to study"

30

https://docs.python.org/3/tutorial/classes.html#inheritance
https://docs.python.org/3/library/functions.html#super

TRY IT YOURSELF!

Include the modified version of print_hi in the class Person, use the class attributes,
and derive the new class Student!

Person: Student(Person):
(name, number): print_hi(self):
.name = name (
.number = number
__name__ ==
print_hi(self): p = Person(
.number > 0: p.print_hi()

squares = [i** [.number)] (p.name)
elem in squares:
(elem) s = Student(
.number == 0: s.print_hi()
((s.name)

(

MORE ON CLASSES: DATA MODEL

The are a lot of built-in functions provided by the base class of all the
classes object. Each of which provide a specific behavior, a few are:

* len__ (self)
Returns the “length” of the object (called by len())

* str__ (self)
Returns the object as a string (called by str())

* It (self, other), __It__ (self, other), __eq__ (self,other)

Called when the obiject is used in a comparison

o getitem___ (self, key), __setitem___ (self, key, value)

Called in square brackets access

32

WORKING WITH EXISTING PROJECTS

Pycharm provides different functionalities for project and code

naviqgation.

Navigate the project with specialized project views, use shortcuts, jump
between files, classes, methods and usages.

You can create a Python project by opening a folder as a project or even
from scratch, by creating or importing the python files.

In this lecture we will not start from scratch...

33

https://www.jetbrains.com/help/pycharm/working-with-source-code.html
https://www.jetbrains.com/help/pycharm/mastering-keyboard-shortcuts.html
https://www.jetbrains.com/help/pycharm/creating-files-from-templates.html#creating-new-file-from-template

OPEN A PROJECT

1. Unzip “simpleClassifier.rar”

2. Open the resulting folder “as a PyCharm
project”

Open

Open in new window

Pin to Quick access

Aggiungi alla scaletta del lettore multimediale VLC
Git GUI Here

Git Bash Here

Riproduci con il lettore multimediale VLC

Open Folder as PyCharm Project

Send with Transfer...
Google Drive

Give access to

34

http://www.iet.unipi.it/m.cimino/lsse/pres/Alfeo,%20simpleClassifier.zip

ALTERNATIVE INTERPRETER CONFIGURATION

File > Settings > Project > Python interpreter > Show all

Settings

Project: simpleClassifier > Python Interpreter

> Appearance & Behavior Python Interpreter: | £ Python 3.8

Keymap
> Editor

<No interpreter>
Package
Plugins ca-certificates) Python 338
> Version Control 5 certifi

: i g i Show All...
v Project: simpleClassifier B cffi Lok,

chardet
Python Interpreter

conda
Project Structure

conda-package-handling

B> Conda Environment > New environment

Location and conda executable may have slightly different paths (the first part) according
to your miniconda3 location.

Add Python Interpreter

Conda Environment ®) New environment

Apply > Ok e Virtualenv Environment I

C:\Users\alfeo\miniconda3\envs\simpleClassifier
@ System Interpreter

I Pipenv Environment Python version: 3.8 v

Conda executable: | C:\Users\alfeo\miniconda3\Scripts\conda.exe

Make available to all projects

35

https://www.jetbrains.com/help/pycharm/configuring-python-interpreter.html#add_new_project_interpreter

| PROJECT REQUIREMENTS 1/2

The requirements are all the packages that our software needs to run properly. Those
can be installed with a PyCharm plugin.

Double click on “requirements.txt” in the Project View > Install Plugin

g requirements.txt

Plugins supporting requirements.txt files found.

Package requirements ‘matplotlib~=3.2.2", 'scikit-learn~=0.23.1", "pytest~=5.4.3", 'pylint' are not satisfied

Install requirements Ignore requirements &%
1 matplotlih~=3.2.2

s@kit-learn~=0.23.1

pytest~=5.4.3

pylint

pylint

Install Cancel

PROJECT REQUIREMENTS 2/2

* If everything goes smoothly you might see the package installation status progress
at the bottom of the GUI.

minutes ago) Installing package 'scikit-learn~=0.23.1"... eo—— 1:1 CRLF UTF-8

* Once the package installation is done a notification appears, but it is still NOT
possible to go to next step, at least untii PyCharm has finished "Updating
skeletons".

Packages installed successfully

Installed packages: ‘matplotlib~=3.2.2',
'scikit-learn~=0.23.1", 'pytest~=5.4.3", 'pylint’

2| Event Log

Updating skeletons... e Showall (2) 1:1 CRLF UTF-8 4 spaces Python 3.8 (simpleClassifier) T

* Each package can also be installed via GUI or with the Terminal by using

* “pip install <name_lib>" to install a single package

* “pip install —=r requirements.txt” to install the packages on the requirements.txt

37

https://www.jetbrains.com/help/pycharm/installing-uninstalling-and-upgrading-packages.html
https://en.wikipedia.org/wiki/Pip_(package_manager)

CHECK THE PACKAGES AVAILABLE

It can take some minutes to complete the requirements installation. A restart may be
required before moving to the next step!

Once done you can see (add, eliminate and upgrade™) the packages and libraries
available in your virtual environment by checking :

File > Settings > Project > Python Interpreter

&‘. Settings

Project: simpleClassifier > Python Interpreter

> Appearance & Behavior Python Interpreter: Python 3.8 (simpleClassifier)
LG ET
> Editor Package Version Latest version

Plugins astroid 242 242
> Version Control atomicwrites 1.4.0 1.4.0
attrs 20.2.0 20.2.0
blas 1.0 1.0
ca-certificates 2020.7.22 4. 2020.10.14

v Project: simpleClassifier

Python Interpreter

Project Structure

38

CONFIGURE THE FIRST RUN

1. Click “Add configuration” 3. Select “main.py” in your project folder.

¢ Python
&
> M Templates
p

Add Configuration...

Open 'Edit Run/Debug configuratio

2. Select “Python”

] Run/Debug Configurations

+ #

Add New Configuration =

Compound

& Python
v LE Python docs
Lm Docutils task

Lm Sphinx task

39

RUN IT! Click RUN

File Edit View Navigate Code Refactor Run Tools VCS Window Help simple

simpleClassifier) & report.png e main ¥

[&] Project v € = ™ — [&irsclassifier.py = main.py i test_irisclassifier.py i report.png

ject

v [simpleClassifier = H ® 6 Vd 640x480 PNG (32-bit color) 13.59 kB
> m
% irisclassifier.py
ﬂa main.py
o README.md
& report.png
& reporttxt

I 1:Pro

¢ 0: Commit

[‘2%, requirerd®nts.tit
[test_irisclassifier.py
> lln External Librdries

20 Scratches and Consoles

v
]
0
L
3
o
i
(-4
=i
(=%

True label

um 7: Structure

M 2: Favorites

1
l Predicted label

K 9:Git i= TODO e Pylint © &: Problems B Terminal @ Python Console Q Event Log
Python 3.8 (simpleClassifier) P master Tm

Txt with evaluation score!l The confusion matrix! 40

m

https://en.wikipedia.org/wiki/Confusion_matrix
https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files

QUESTIONS?

